Functional NMDA receptors are expressed by both AII and A17 amacrine cells in the rod pathway of the mammalian retina.

نویسندگان

  • Yifan Zhou
  • Barbora Tencerová
  • Espen Hartveit
  • Margaret L Veruki
چکیده

At many glutamatergic synapses, non-N-methyl-d-aspartate (NMDA) and NMDA receptors are coexpressed postsynaptically. In the mammalian retina, glutamatergic rod bipolar cells are presynaptic to two rod amacrine cells (AII and A17) that constitute dyad postsynaptic partners opposite each presynaptic active zone. Whereas there is strong evidence for expression of non-NMDA receptors by both AII and A17 amacrines, the expression of NMDA receptors by the pre- and postsynaptic neurons in this microcircuit has not been resolved. In this study, using patch-clamp recording from visually identified cells in rat retinal slices, we investigated the expression and functional properties of NMDA receptors in these cells with a combination of pharmacological and biophysical methods. Pressure application of NMDA did not evoke a response in rod bipolar cells, but for both AII and A17 amacrines, NMDA evoked responses that were blocked by a competitive antagonist (CPP) applied extracellularly and an open channel blocker (MK-801) applied intracellularly. NMDA-evoked responses also displayed strong Mg(2+)-dependent voltage block and were independent of gap junction coupling. With low-frequency application (60-s intervals), NMDA-evoked responses remained stable for up to 50 min, but with higher-frequency stimulation (10- to 20-s intervals), NMDA responses were strongly and reversibly suppressed. We observed strong potentiation when NMDA was applied in nominally Ca(2+)-free extracellular solution, potentially reflecting Ca(2+)-dependent NMDA receptor inactivation. These results indicate that expression of functional (i.e., conductance-increasing) NMDA receptors is common to both AII and A17 amacrine cells and suggest that these receptors could play an important role for synaptic signaling, integration, or plasticity in the rod pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus.

Diabetes leads to dysfunction of the neural retina before and independent of classical microvascular diabetic retinopathy, but previous studies have failed to demonstrate which neurons and circuits are affected at the earliest stages. Here, using patch-clamp recording and two-photon Ca(2+) imaging in rat retinal slices, we investigated diabetes-evoked changes in a microcircuit consisting of rod...

متن کامل

Glutamate receptors in the rod pathway of the mammalian retina.

Rod bipolar (RB) cells of the mammalian retina release glutamate in a graded, light-dependent fashion from 20 to 40 ribbon synapses (dyads). At the dyads, two classes of amacrine cells, the AI and AII cells, are the postsynaptic partners. We examined the glutamate receptors (GluRs) that are expressed by AI and AII cells using immunocytochemistry with specific antibodies against GluR subunits. S...

متن کامل

Complex inhibitory microcircuitry regulates retinal signaling near visual threshold.

Neuronal microcircuits, small, localized signaling motifs involving two or more neurons, underlie signal processing and computation in the brain. Compartmentalized signaling within a neuron may enable it to participate in multiple, independent microcircuits. Each A17 amacrine cell in the mammalian retina contains within its dendrites hundreds of synaptic feedback microcircuits that operate inde...

متن کامل

Temporal modulation of scotopic visual signals by A17 amacrine cells in mammalian retina in vivo.

We examined function of the feedback pathway from A17 GABAergic amacrine cells to rod bipolar cells (A17 feedback), a critically located inhibitory circuit in the classic rod pathway of the mammalian retina whose role in processing of scotopic visual information is still poorly understood. We show evidence that this A17 feedback has a profound influence on the temporal properties of rod-driven ...

متن کامل

Electron microscopic analysis of the rod pathway of the rat retina.

Two immunocytochemical markers were used to label the rod pathway of the rat retina. Rod bipolar cells were stained with antibodies against protein kinase C and AII-amacrine cells with antibodies against parvalbumin. The synaptic circuitry of rod bipolars in the inner plexiform layer (IPL) was studied. Rod bipolar cells make approximately 15 ribbon synapses (dyads) in the IPL. Both postsynaptic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 115 1  شماره 

صفحات  -

تاریخ انتشار 2016